Skip to main content

Amidst 'dismal performance' of N-power, fears of Indian Fukushima keep haunting

By Soumya Dutta* 
In this period of ever-increasing Climate Crisis, when many voices pushing nuclear fission power as a supposedly zero-carbon safe’ energy are being heard, it is fitting to remember some of the catastrophic disasters of the nuclear power industry. Particularly when we are standing close to 11th March 2023, when one of the worst disasters took place in the Fukushima prefecture, in Japan 12 years ago.
Just about 37 years ago, on April 26, 1986, in the then Soviet Union, one of the four 1000 MW nuclear fission reactors in the Chernobyl nuclear power station started to go out of control, becoming possibly the worst industrial disaster in human history, in terms of its toll on human lives and health. Ironically, the plant operators were trying to demonstrate one of the claimed ‘safety features’ of using the inertial energy of the spinning systems to supply crucial cooling power during the transition due to a power failure and switchover to backup power.
Instead, all hell broke loose. The complex control systems comprising the graphite moderators, boron carbide control rods, Xenon 135 build up and decay, unexpected power fluctuations quickly took all means of control out of the hands of the desperate crew. The rest is disastrous history.
The radioactive fallout spread quickly throughout Europe and beyond. There is no exact or agreed upon figure of human costs in terms of deaths and serious diseases like cancer, but a study by three scientists published in 2009, by the New York Academy of Sciences, estimated the total death figures in those years to be about 985,000! No one is sure how close or off that mark is, but it brings home the point about the massive risks.
Twelve years ago, on the 11th of March 2011, ‘all hell broke loose, again’ in the Pacific coast of Japan. A huge Tsunami, triggered by the gigantic Tohuku earthquake, which swept away towns and villages, also hit the Fukushima Daiichi nuclear power plants on the coast, overwhelming the defensive sea walls.
What followed is now well known to the whole world, as the live television coverage of the apocalyptic events streamed into all homes across the globe. Three of the six boiling-water nuclear reactors went completely out of control into meltdown, spreading deadly radioactive materials. Lakhs of people were evacuated, huge areas became uninhabitable for decades or even centuries, massive radioactive water was (and is still being) dumped into the Pacific Ocean, causing untold damage to marine life.
And that disaster is still unfolding 12 years down the line, with no certainty about when the technologically and financially sound Japanese government and the corporate world (TEPCO owns and ran the Fukushima Daiichi NPP) will be able to fully contain and decommission these reactors.
One was reminded of the 1986 Chernobyl disaster as the only comparably horrendous nuclear disaster, both being classified at the highest rank of Level-7 in the deceptively named “International Nuclear and Radiological Events Scale INES”. These are not events, these are apocalyptic events.
Many such nuclear disasters happen every decade in many countries operating nuclear power projects, at various smaller scales. And it’s better not to forget the cataclysmic nuclear bombings of Hiroshima (over 1200,000 dead from one small fission bomb) and Nagasaki. That’s not the end of nuclear bombs destructive story, though, as the ‘nuclear powers’ have tested over 2000 of these nuclear weapons of mass destruction in several designated areas of the world.
The tales of the major US testing site, the Marshal Islands and how its unsuspecting citizens were used as nuclear-exposure guinea pigs, is another horror story. Similar but lesser known stories exist in the Soviet nuclear test sites of Semipalatinsk in Kazakhstan, Novaya Zemlya and others, the French nuclear test sites of Reggane & Akker in Algeria and the Mururoa Atoll in the Pacific, the British test sites in the Australian territories of Monte Bello, Maralinga, Emu Field, and the Chinese test site of Lop Nur in the Uygur Autonomous region.

Winding down process has started

The problems and dangers of nuclear power were evident from the beginning, no less from its intricate association with nuclear bombs. But in the early decades, scientists were confident that these problems can be tackled in time, with new research and developments. Reactors had supposedly ‘fail-safe safety systems’, the radioactive releases were small to begin with, and the occasional accidents were either hidden or underreported by both the governments and the companies involved.
Three Mile Island nuclear reactor accident in March 1979 started changing all that. There were several ‘nuclear accidents’ reported to and listed in the International Atomic Energy Agency database before this, but this was the first reported and recorded case of a feared Core melt-down. The core of Reactor-2 at TMI partially melted but only a small amount of radioactive gases were released, as reported to the International Atomic Energy Agency, IAEA.
One thing is worth noting – all reporting to the IAEA INES are voluntary, meaning whatever and to what extent the accidents will be reported, and their impacts recorded, depends on what the member country (where the accident occurred) choose to report – a very tricky arrangement indeed. And then came the mega accident of Chernobyl in 1986.
It needs to be noted that studies of the IAEA INES shows that about 100 significant accidents happened in world’s NPPs from mid-1950s to 2010, before Fukushima happened. And these started right from the dawn of the nuclear age, in 1957, with the Mayak, Kysthym disaster in the erstwhile Soviet Union, in the fuel reprocessing plant.
India is also not spared – the Narora near accident, the Rawatbhata accidents point to our vulnerabilities, and the disastrous project of Koodankulam is a ticking (nuclear) time bomb. With nuclear reactors, it’s not just the major problem of accidents (which can be catastrophic, like Chernobyl or Fukushima), but also the regular release of radioactive contaminants into the environment.
Any operating reactor will – in the very process of Uranium fission – generate radioactive by-products in the form of gases and solid particles. This happens throughout the nuclear fuel cycle, from Uranium mining and processing to reactor operation, venting and generation of spent fuel.
Millions of tons of comparatively low level radioactive mine tailings and radioactive process liquids are left after the mining, as the occurrence of Uranium in ores is generally a low percentage. Though of low level radioactivity, these can and do have serious impacts on surrounding populations and animals and plants, as anyone can verify in India, by the Examples of Jaduguda, Turamdih (both in Jharkhand), Tummalapalle, KK Kottala, Mabbuchintalpalle (in Andhra Pradesh) etc.
The uranium fission process generates radioactive gases like Iodine 131, Caesium 137 etc. that have ‘half-lives’ (by what time the radioactivity level drops to half) of hours and days to dozens of years. Considering that at least five half-lives (ten is the conservative opinion) are needed for these to become of an ‘acceptable’ level of radiation exposure, the surrounding populations of any NPP are regularly exposed to unacceptable levels.
Breathing these highly radioactive gases and the fine radioactive particulates (generally, the shorter the half-life, the stronger is the radiation level) causes the inside tissues of our bodies to get exposed to these dangerous radiations, which can cause a host of serious diseases and even genetic mutations.
On top of all that, the biggest radioactive contaminant is the spent fuel, where both highly radioactive and long-lived contaminants are concentrated. And some of these, like all the Plutomnium239 generated in the world’s approximately 430 nuclear reactors, will remain dangerously radioactive for well over a hundred thousand years, with a half life of about 24,000 years.
Let’s learn from Fukushima and Chernobyl, adapt to 21st century world, abandon the tried and failed nuclear-fission power system
After about six decades of research and spending many billions of dollars, scientists have not yet found a safe and feasible solution to the mounting problem of safe disposal of radioactive spent fuel. Nor are they any closer to any perceived technological solution than they were 50 or 40 years ago. In the meantime, the world of energy has changed, and changed dramatically in some of its aspects.
Nuclear power has other serious limitations of geography, politics and economics. With its better quality indigenous uranium ores already exploited or in difficult to access areas, the cost of extracting, refining and fabricating fuel rods have gone up. As per some estimates, India’s indigenous fuel resources cannot run a single-use (breeder reactors are as yet far off) nuclear power program much bigger than 10,000-12,000 MW.
This will necessitate importing uranium, as we are already doing in substantial scale. India is already dependent on Russia, Canada, France, Kazakhstan, Australia etc., for nuclear fuel for its operational power plants. Nothing concrete has been done to tackle, even in the medium term, the mounting stockpile of nuclear wastes, particularly the highly radioactive (for a very long time) spent fuel stocks.
With additional safety features required as a result of flaws exposed by the massive nuclear accidents, the costs of building new nuclear reactors is going up, and will continue to go up for some time, making these economically uncompetitive by a large margin, while the costs of solar and wind energy keeps falling. Meanwhile, the fears of an ‘Indian Fukushima’ will keep haunting us all.

Society needs energy, not nuclear-fission technologies

The world today is very different from what we had in the 1960s and 1970s. We are now well aware of the enormous dangers of the nuclear fission route to power. We have faced two mega nuclear disasters, and have seen that in spite of their huge financial, technological and managerial capacities, neither the Soviet Union nor Japan or the US, have been able to control these nuclear catastrophes. And it’s now clear, that no conceivable near-future technology exists to do that kind of work.
We have also arrived at a very different techno-economic reality in terms of renewable power and energy sources. The technical capability of commercially available solar photo-voltaic panels today gives us about 20% efficiency, compared to 8-10% a decade or so ago. And poised to grow quickly to over 25%. 
The cost of solar PV generated electricity has dropped over 16 times over the last 15 years.
Today solar PV generated electricity in good solar areas cost about Rs.2.60 to 2.90 Kwh/unit, compared to Rs.3.50-4.50 from new coal power projects and anywhere between Rs.6-9 from new nuclear power projects (if all subsidies are calculated). Wind power from good sites also cost around Rs.3.00—3.50 per unit.
Both solar PV and wind power has some small adverse impacts on the local ecology, and for the centralized models – on local populace. But none of these are inherent to the technology or pose any technological challenges, though social reorientation is needed to include communities in the benefits, which is not possible with nuclear or coal power. And neither solar nor wind energy plants will explode, spreading radioactive contaminants or toxic chemicals over tens of thousands of square kilometres, forcing lakhs of people to be evacuated or thousands to be killed by cancer or other deadly diseases.
How critically dependent is the world, and India in particular, on the available nuclear power today? The total installed electricity generating capacity in the world, at the end of 2021, was about 10,865 GW. Out of this, installed nuclear power capacity was around 375 GW, or about 3.45%, while total installed capacity of renewables was about 1,842 GW (including about 1,186 GW of hydropower, this will rise to about 3028 GW, or 8 times that of nuclear fission power capacity).
While fossil fuel based power capacity still making up over 40% of the total, at around 4,437 GW. The share of total generated nuclear power is a little higher than this, though, compared to total power generated. We in India have a total installed electricity capacity (of all types) of around 411 GW, of which all the 22 operating nuclear reactors contribute a paltry 6.78 GW, or about 1.65%.
About 2000 MW of this nuclear power is the on-now-off-again Koodankulam power plant. In the year 2019 (pre-pandemic and lockdowns), these nuclear power plants produced about 43 billion units (each unit being a KWhr), compared to the total commercial generation of about 1390 billion units, thus contributing to about 3.1% of the generation, with roughly 1.8% of the country-wide installed capacity.
At the same time, dozens of existing grid-connected power units had been shut down for lack of demand of electricity, the peak demand at around 200 GW being roughly half of the total installed capacity. At the same time, all renewable energy sources taken together (excluding big hydropower) has produced about 10% of the total generation. And once you consider that nuclear-fission energy is being aggressively promoted in India from the early 1960s, with the first power plant,Tarapur-1, coming online in 1969, this dismal performance over such a long period of time becomes even more pathetic.
In contrast, the first large commercial wind power projects in India began in the late 1980s, with an installed capacity by end-2022, of about 42 GW. The first commercial solar power project (just 2 MW capacity) in India began operation in late 2000s in Punjab. In just 15 odd years, India’s installed commercial solar power capacity has reached about 65 GW. Both recent commercial wind and solar power plants are generating power at less than Rs.3.00 per KWHr cost, often less than artificially depressed coal power prices.
So, let’s learn from Fukushima, and Chernobyl, adapt to the 21st century world and abandon the tried and failed 20th century nuclear-fission power system, and transition to a cleaner, safer, cheaper renewable power world. The world will be much better off without the ever-present threats of other Fukushimas.
*Works with MAUSAM (Movement for Advancing Understanding on Sustainability And Mutuality), and SAPACC (South Asian Peoples’ Action on Climate Crisis). This is an excerpt from the report “Fukushima, Chernobyl, Three-Mile Island and more; the case against disastrous Nuclear-fission power as India’s energy source”, published by Centre for Financial Accountability


WhoFlungDung said…
You may look for photos of Vajpayee and Indira Gandhi inspecting our nuclear tests.

The next day after said event.

I will give you a few moments to stop laughing.

Both of them and their cronies are standing at ground zero one day after the test, with no protective clothing except white canvas bags over their shoes.

A 20kt bomb is supposed to have exploded just 100 ft below ground at that point they are standing, and yet all we see is a little pile of dirt, not even scorched.

Look at the ground. It is just cracked dirt. It should have been heated to extremely high temperatures and turned to magma or aerosoled.

We are told they are wearing the medical booties to prevent trinitite from sticking to their shoes, but do you see any trinitite? Trinitite is supposed to be a kind of glass, created by taking the dirt and rocks to high temperatures. Do you see anything that resembles glass there? I don't. It just looks like cracked clay, as in any normal desert.

And does glass stick to your shoes? No. If you brought the desert foor to extremely high temperatures and then allowed it to cool very fast, it would be the opposite of sticky. It would be very hard and non-porous, again like glass.
We are told the desert sand was largely made of silica, but from the photo above, we can see that isn't true. They are standing on cracked clay, not sand.

And why no hole? Indira and Vajpayee are inspecting what looks like a cracked sewage pipe.

Remember, all the faked photos we see of these events include a giant column and mushroom.

Where do you think the column and mushroom come from?

We are led to believe they come from an uplift of sediment on the ground. Where else would they come from? Well, if you uplift a huge column of sediment on the ground and broadcast it into the sky, then there will have to be a huge blast crater or hole. Instead, we see just a miniscule pile of dirt here.

Look at its physics. They say energy is released when during fusion and during fission. That’s what the books say.

But think for yourself. How is such a ridiculous thing possible. Energy can be released only in one direction. Not both.

So it means that the nuclear gang from homi baba to seth to ramanna are most likely faking it.

Nuclear energy simply can’t be produced the way it’s described.

I’m telling you this nuclear power is industrial scale cheating. They are probably operating a gas fired power plant.


'Draconian' Kerala health law follows WHO diktat: Govt readies to take harsh measures

By Dr Maya Valecha*  The Governor of Kerala has signed the Kerala Public Health Bill, which essentially reverses the people’s campaign in healthcare services in Kerala for decentralisation. The campaign had led to relinquishing of state powers in 1996, resulting in improvement of health parameters in Kerala. Instead, now, enforcement of law through the exercise of power, fines, etc., and the implementation of protocol during the pandemic, are considered of prime importance.

A Hindu alternative to Valentine's Day? 'Shiv-Parvati was first love marriage in Universe'

By Rajiv Shah*   The other day, I was searching on Google a quote on Maha Shivratri which I wanted to send to someone, a confirmed Shiv Bhakt, quite close to me -- with an underlying message to act positively instead of being negative. On top of the search, I chanced upon an article in, imagine!, a Nashik Corporation site which offered me something very unusual. 

Bihar rural women entrepreneurs witness 50% surge in awareness about renewal energy

By Mignonne Dsouza*  An endline survey conducted under the Bolega Bihar initiative revealed a significant increase in awareness of renewable energy among women, rising from 25% to 76% in Nalanda and Gaya. Renu Kumari, a 34-year-old entrepreneur from Nalanda, Bihar, operates a village eatery that serves as the primary source of income for her family, including her husband and five children. However, a significant portion of her profits was being directed toward covering monthly electricity expenses that usually reach Rs 2,000. 

Work with Rajasthan's camel herders: German scientist wins World Cookbook Award 2023

By Rosamma Thomas*  Gourmand World Cookbook Awards are the only awards for international food culture. This year, German scientist  Ilse Kohler Rollefson , founder of Camel Charisma, the first of India’s camel dairies, in Pali district of Rajasthan, won the award for her work with camel herders in Rajasthan, and for preparing for the UN International Year of Camelids, 2024. 

Reject WHO's 'draconian' amendments on pandemic: Citizens to Union Health Minister

By Our Representative  Several concerned Indian citizens have written to the Union Health Minister to reject amendments to the International Health Regulations (IHR) of the World Health Organization (WHO) adopted during the 75th World Health Assembly (WHA75) in May 2022, apprehending this will make the signatories surrender their autonomy to the “unelected, unaccountable and the whimsical WHO in case of any future ‘pandemics’.”

Golwalkar's views on tricolour, martyrs, minorities, caste as per RSS archives

By Shamsul Islam*  First time in the history of independent India, the in-charge minister of the Cultural Ministry in the current Modi government, Prahlad Singh Patel, has glorified MS Golwalkar, second supremo of the RSS and the most prominent ideologue of the RSS till date, on his birth anniversary, February 19. In a tweet he wrote : “Remembering a great thinker, scholar, and remarkable leader #MSGolwalkar on his birth anniversary. His thoughts will remain a source of inspiration & continue to guide generations.”

Swami Vivekananda's views on caste and sexuality were 'painfully' regressive

By Bhaskar Sur* Swami Vivekananda now belongs more to the modern Hindu mythology than reality. It makes a daunting job to discover the real human being who knew unemployment, humiliation of losing a teaching job for 'incompetence', longed in vain for the bliss of a happy conjugal life only to suffer the consequent frustration.

Why is electricity tariff going up in India? Who is the beneficiary? A random reflection

By Thomas Franco*  Union Ministry of Power has used its power under Section 11 of the Electricity Act, 2003 to force States to import coal which has led to an increase in the cost of electricity production and every consumer is paying a higher tariff. In India, almost everybody from farmers to MSMEs are consumers of electricity.

Deplorable, influential sections 'still believe' burning coal is essential indefinitely

By Shankar Sharma*  Some of the recent developments in the power sector, as some  recent news items show, should be of massive relevance/ interest to our policy makers in India. Assuming that our authorities are officially mandated/ committed to maintain a holistic approach to the overall welfare of all sections of our society, including the flora, fauna and general environment, these developments/ experiences from different parts of the globe should be clear pointers to the sustainable energy pathways for our people.

Environmental cost of Green Revolution: India world’s second-highest fertilizer importer

By Glenn Davis Stone*  Feeding a growing world population has been a serious concern for decades, but today there are new causes for alarm. Floods, heat waves and other weather extremes are making agriculture increasingly precarious, especially in the Global South .